22/14(a)

The University of Sydney

<u>CHEM1108 - CHEMISTRY 1A LIFE SCIENCES</u> <u>FIRST SEMESTER EXAMINATION</u>

CONFIDENTIAL

JUNE 2008

TIME ALLOWED: THREE HOURS

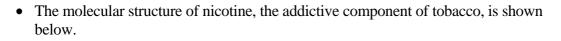
GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

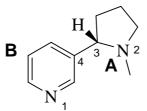
FAMILY		SID	
NAME		NUMBER	
OTHER		TABLE	
NAMES		NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 21 pages of examinable material.
- Complete the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a ●.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution. Logarithms may also be used.
- Numerical values required for any question as well as a Periodic Table are printed on a separate data sheet.
- Pages 21 and 24 are for rough work only.

OFFICIAL USE ONLY


Multiple choice section			
/	Marks		
Pages	Max	Gained	
2-10	29	$\overline{}$	
2-10	29		


Short answer section

		Marks		
Page	Max	Gained		Marker
11	9			
12	8			
13	4			
14	7			
15	5			
16	5			
17	7			
18	2			
19	5			
20	6			
22	7			
23	6			
Total	71			
Check	Total			

Marks • Complete the following table, giving either the systematic name or the molecular 2 formula as required. Formula Systematic name SO_2 $CoCl_2 \cdot 6H_2O$ silver chromate potassium hydrogencarbonate • Complete the following table, providing the ground state electron configuration for each 3 of the following species. Species Ground state electron configuration nitrogen atom chloride ion manganese(II) ion • Copper is an essential element in human biology, deficiencies leading to blood 4 disorders. Excess copper can occur in cases of poisoning or in Wilson's disease. Draw a graph showing the relationship between overall health and the level of copper in the body and identify the 'healthy' range. Overall health Cu concentration Describe one biological function of copper. Suggest one approach for treating an excess level of copper.

Marks 8

List the types of intermolecular interactions that each of the following sites on nicotine would be involved in when it is dissolved in water.

Α	
В	

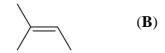
Provide the requested information for each of the indicated atoms in nicotine.

Atom	Geometric arrangement of the electron pairs around the atom	Hybridisation of the atom	Geometry around the atom
N-1			
N-2			
C-3			
C-4			

The pK_b of N-1 is 10.88 and the pK_b of N-2 is 5.98. Draw the structure of the predominant form of nicotine that exists in the human body at pH 7.4.

Marks • Lithium salts, especially lithium carbonate, are commonly used in the treatment of 4 bipolar disorder. Write the net ionic equation for the reaction which occurs between lithium carbonate and hydrochloric acid in the stomach. Lithium orotate (as a monohydrate salt, LiC₅H₃N₂O₄·H₂O) is a controversial alternative formulation sold in some health food stores. The orotate ion is the conjugate base of orotic acid, whose structure is shown below. orotic acid OH Like the carbonate, lithium orotate is taken orally. Using an equation, comment on any differences between the form in which lithium is bioavailable from these two lithium salts. Like three of the bases found in DNA and RNA, orotic acid is a derivative of pyrimidine. Also like those bases, orotic acid and its salts have tautomers. Draw the structural formula of a tautomer of lithium orotate. lithium orotate tautomer of lithium orotate HN ١H

Marks • Complete the following table. Make sure you indicate any relevant stereochemistry. 7 CONSTITUTIONAL **REAGENTS**/ STARTING MATERIAL FORMULA(S) OF MAJOR CONDITIONS ORGANIC PRODUCT(S) 1. $SOCl_2$ CH₃CH₂COOH 2. CH₃CH₂OH OCH₂CH₃ dilute H^{\oplus} H₃C- $-CH_3$ OCH₂CH₃ excess Br₂ in $H-C\equiv C-CH_3$ diethyl ether solvent 0 || 0 || CH₃CH₂CH₂CH₂CH₂OH CH₃ CH₃ Ò. conc. H₂SO₄ catalyst H_2O $H_2 / Pd / C$ ethanol solvent


H

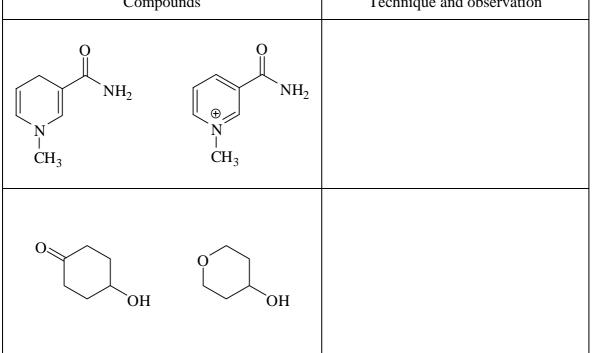
Η

4

 $H \xrightarrow{C} C \xrightarrow{C} O \xrightarrow{C} O \xrightarrow{C} O \xrightarrow{C} H$

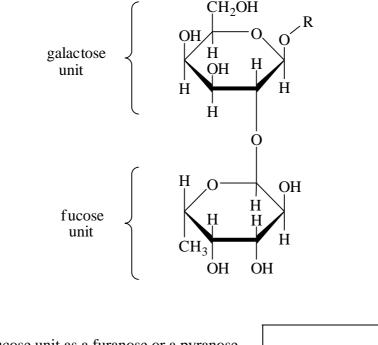
• Consider the alkene, 2-methyl-2-butene (**B**).

When (**B**) is treated with hydrogen chloride in methanol, two carbocations can be formed. The major carbocation reacts with nucleophiles that are present in the reaction to give an alkyl halide and an ether. Provide constitutional formulas of these intermediates and products in the appropriate boxes below.


major carbocation	minor carbocation
alkyl halide product	ether product

•	• (+)-Citronellal is a widely occurring natural product present in citronella oil, lemon and lemon grass. It is used as a soap perfume and in insect repellents.		
	H H citronellal		
	Give the molecular formula of citronellal.		
	Identify the functional groups present in citronellal.		
<u> </u>	Draw the constitutional formula of the product(s) formed when citronellal is treated with each of the following reagents.		
C	$r_2 O_7^{2\Theta} / H^{\oplus}$		
3	M H ₂ SO ₄		
ex	xcess CH ₃ OH / catalytic amount H ₂ SO ₄		

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.


Marks • Devise a synthesis of 1,2-dibromocyclohexane from cyclohexanone. Note that more 3 than one step is required and you should indicate all necessary steps and the constitutional formulas of any intermediate compounds. Ο Br Br • Indicate the reagents used in the laboratory to undertake the following 4 transformations. `s[⊖] B А S SH С D S -S SH **A**: **B**: **C**: Provide a description for transformation **B**. Provide a description for transformation D.

Using a spectroscopic technique, how would you distinguish between the following pairs of compounds? Indicate the observations you would make.
Compounds
Technique and observation

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

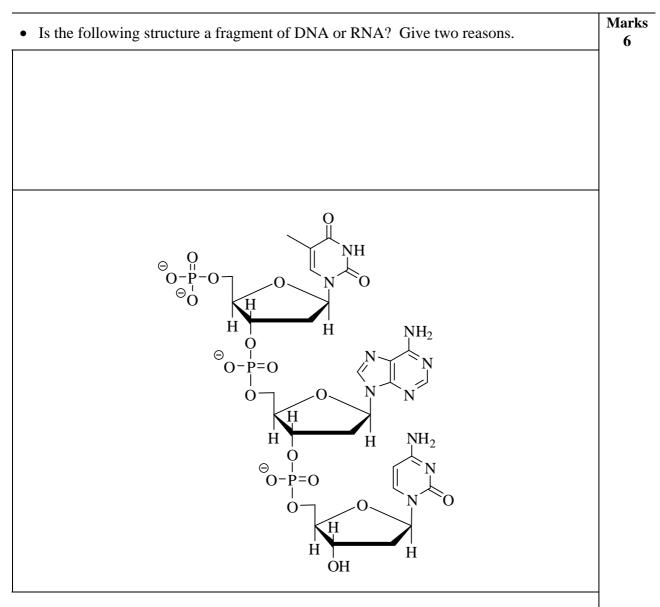
Marks • Aniline, benzoic acid and benzamide are all insoluble in water, but soluble in ether. 5 Explain how, by using simple laboratory reagents and equipment, each compound could be separated and recovered from a mixture of all three. CONH₂ COOH NH₂ aniline benzoic acid benzamide

Specify the fucose unit as a furanose or a pyranose.

Specify fucose as a hexose, a pentose or a tetrose.

The type O blood group antigen can be hydrolysed to galactose, fucose and a glycoprotein unit. Give the Fischer projections of the open chain form of galactose and fucose.

	1
Fischer projection of galactose	Fischer projection of fucose


On your Fischer projection of galactose indicate with an asterisk (*) the carbon atom used in the D/L convention.

Specify the galactose from blood antigen as D-galactose or L-galactose.

Specify the fucose from blood antigen as D-fucose or L-fucose.

Marks • The tripeptide glycyl-L-histidyl-L-lysine (**M**) is a liver growth factor. 7 N = NH **(M)** Ĥ H_2N COOH N H 0 NH_2 At pH 4 this tripeptide exists mainly as a species (N) with three positive charges. Give the constitutional formula for (N). Vigorous acid hydrolysis of tripeptide (M) gives three amino acids: glycine, L-histidine and L-lysine. Give constitutional formulas of these amino acids obtained after hydrolysis of (M) with 6 M HCl. Make sure you show the products in the appropriate ionic states and with the correct stereochemistry. glycine L-histidine L-lysine Why does histidine have an "L" descriptor, but glycine does not?

CHEM1108

Clearly identify on the above structure one example of each of the following subunits.

- phosphate ester
- nucleic base
- nucleoside
- nucleotide

CHEM1108 - CHEMISTRY 1A LIFE SCIENCES

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Permittivity of a vacuum, $\epsilon_0 = 8.854 \times 10^{-12} \ {\rm C}^2 \ {\rm J}^{-1} \ {\rm m}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ $= 0.08206 \ {\rm L} \ {\rm atm} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \ {\rm kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Decimal fractions		Deci	Decimal multiples		
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol
10^{-3}	milli	m	10^{3}	kilo	k
10^{-6}	micro	μ	10^{6}	mega	Μ
10^{-9}	nano	n	10^{9}	giga	G
10^{-12}	pico	р			

CHEM1108 - CHEMISTRY 1A LIFE SCIENCES

Standard Reduction Potentials, E°	
Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$Ce^{4+}(aq) + e^- \rightarrow Ce^{3+}(aq)$	+1.72
$MnO_{4}^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightarrow Mn^{2+}(aq) + 4H_{2}O$	+1.51
$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$NO_3^-(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.40
$\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89
$\mathrm{Al}^{3+}(\mathrm{aq}) + 3\mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$Li^+(aq) + e^- \rightarrow Li(s)$	-3.04

CHEM1108 - CHEMISTRY 1A LIFE SCIENCES

Useful formulas

Quantum Chemistry	Electrochemistry
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	Moles of $e^- = It/F$
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$= E^{\circ} - (RT/nF) \times \ln Q$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$4.5k_{\rm B}T = hc/\lambda$	$= (RT/nF) \times \ln K$
$T = 2.898 \times 10^6 / \lambda (\text{nm})$	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT
$\mathbf{p}K_{\mathrm{w}} = \mathbf{p}K_{\mathrm{a}} + \mathbf{p}K_{\mathrm{b}} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Colligative properties	Kinetics
$\pi = cRT$	$t_{l/2} = \ln 2/k$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-Ea/RT}$
$\mathbf{p} = k\mathbf{c}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{o} - kt$
$\Delta T_{\rm f} = K_{\rm f} m$	$\ln\frac{k_2}{k} = \frac{E_a}{R} \left(\frac{1}{T} - \frac{1}{T}\right)$
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 R T_1 T_2'$
Radioactivity	Thermodynamics & Equilibrium
$t_{\frac{1}{2}} = \ln 2/\lambda$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$A = \lambda N$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
$\ln(N_0/N_t) = \lambda t$	$\Delta G^{\circ} = -RT \ln K$
14 C age = 8033 ln(A_0/A_t) years	$K_{\rm p} = K_{\rm c} \ (RT)^{\Delta n}$
Miscellaneous	Mathematics
$A = -\log \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$A = \varepsilon c l$	$\ln x = 2.303 \log x$
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 hydrogen																	2 HELIUM
Η																	Не
1.008		1											1		-		4.003
3 LITHIUM	4 beryllium											5 boron	6 CARBON	7 NITROGEN	8 oxygen	9 FLUORINE	10 NEON
Li	Be											B	C	N	O	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
SODIUM	MAGNESIUM											ALUMINIUM	silicon Si	PHOSPHORUS P	SULFUR	CHLORINE	ARGON
Na 22.99	Mg 24.31											Al 26.98	SI 28.09	P 30.97	S 32.07	Cl 35.45	Ar 39.95
19	24.51	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
POTASSIUM	CALCIUM	SCANDIUM	TITANIUM	VANADIUM	CHROMIUM	MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYPTON
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37 RUBIDIUM	38 strontium	39 yttrium	40 zirconium	41 NIOBIUM	42 molybdenum	43 TECHNETIUM	44 RUTHENIUM	45 RHODIUM	46 palladium	47 SILVER	48 cadmium	49 INDIUM	50 TIN	51 ANTIMONY	52 TELLURIUM	53 IODINE	54 XENON
Rb	Sronnom	Y	Zr	Nobilom	MOLYBDENUM	Тс	Ru	Rh	PALLADIOM	Ag	Cd	In	Sn	Sb	Te	I	XENON
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM	BARIUM		HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM		PLATINUM	GOLD	MERCURY	THALLIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON
Cs 132.91	Ba 137.34		Hf 178.49	Ta 180.95	W 183.85	Re 186.2	Os 190.2	Ir 192.22	Pt 195.09	Au 196.97	Hg 200.59	Tl 204.37	Pb 207.2	Bi 208.98	Po [210.0]	At [210.0]	Rn [222.0]
87		89-103	178.49	100.95	100	100.2	190.2	192.22	195.09	190.97	200.39	204.37	207.2	200.90	[210.0]	[210.0]	[222.0]
O / FRANCIUM	RADIUM		RUTHERFORDIUM	103 dubnium	SEABORGIUM	107 BOHRIUM	HASSIUM	109 MEITNERIUM	1 1 U DARMSTADTIUM	ROENTGENIUM							
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]	[271]	[272]							
							-										

LANTHANIDES	57 LANTHANUM La	58 CERIUM Ce	59 praseodymium Pr	60 NEODYMIUM Nd	61 promethium Pm	62 samarium Sm	63 ^{EUROPIUM} Eu	64 gadolinium Gd	65 ^{теквіим} Тb	66 dysprosium Dy	67 ноіміим Но	68 Erbium Er	69 тнослом Tm	70 ytterbium Yb	71 LUTETIUM Lu
	138.91	140.12	140.91	144.24	[144.9]	150.4	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
ACTINIDES	89 ACTINIUM	90 THORIUM	91 protactinium	92 uranium	93 NEPTUNIUM	94 plutonium	95 Americium	96 curium	97 Berkellium	98 californium	99 EINSTEINIUM	100 Fermium	101 mendelevium	102 NOBELIUM	103 LAWRENCIUM
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]

CHEM1108

22/14(b)

PERIODIC TABLE OF THE ELEMENTS